Programme de khôlle de maths no 5

Semaine du 13 Octobre

Cours

Chapitre 2: Logique

- Logique : propositions, connecteurs, quantificateurs, implications et équivalences.
- Lois de De Morgan
- $(A \Rightarrow B) \iff (\neg A \lor B)$, négation de $A \Rightarrow B : A \land \neg B$
- Raisonnement par l'absurde, par contraposée, par disjonction de cas (par ex : (in)équations avec valeur absolue), par analyse-synthèse (résolution d'(in)équations).

Chapitre 3: Ensembles et applications

- Egalité, inclusion d'ensembles
- Ensemble vide, ensemble $\mathcal{P}(E)$ des sous-ensembles d'un ensemble E, ensemble $F \setminus E = \{x \in F, x \notin E\}$.
- Union et intersection de deux ensembles, complémentaire dans un ensemble.
- Union et intersection d'une famille quelconque d'ensembles.
- Produit cartésien, n-uplet (définitions)
- Application $f: E \to F$, ensemble de départ, ensemble d'arrivée, image directe f(A) de $A \in \mathcal{P}(E)$, image réciproque $f^{-1}(B)$ de $B \in \mathcal{P}(F)$.
- Restriction d'une application, prolongement d'une application
- Injection, surjection, bijection. Application réciproque d'une bijection. Application identité. $f: E \to F$ est une bijection si et seulement si il existe $g: F \to E$ tel que $f \circ g = \operatorname{Id}_F$ et $g \circ f = \operatorname{Id}_E$ et alors $f^{-1} = g$.
- Dénombrement : arrangements, permutations, combinaisons.

Questions de cours et exercices vus en classe

- 1. Soient A et B deux ensembles, montrer que : $A \cap B = B \iff B \subset A$
- 2. Soient A et B deux ensembles, montrer que : $A \cup B = B \iff A \subset B$
- 3. Soient A, B et C trois ensembles, montrer que : $(A \cap B = A \cap C)$ et $A \cup B = A \cup C$ $\iff B = C$
- 4. Soient A et B deux parties d'un ensemble E. En notant \overline{A} et \overline{B} leurs complémentaires respectifs dans E, montrer que : $\overline{A} \subset B \Longleftrightarrow \overline{B} \subset A$
- 5. Montrer que $f(A \cup B) = f(A) \cup f(B)$ et que $f(A \cap B) \subset f(A) \cap f(B)$. Donner un exemple pour lequel on n'a pas l'inclusion réciproque.
- 6. Si $f: E \to F$ et $g: F \to G$ sont deux applications, montrer que
 - Si $g \circ f$ est surjective alors g est surjective
 - Si $g \circ f$ est injective alors f est injective.

Exercices

- 1. Démontrer que $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 2. Montrer que $f(B) \setminus f(A) \subset f(B \setminus A)$.
- 3. Montrer que si $A \cap B = A \cup B$ alors A = B.
- 4. Montrer que $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$
- 5. Si $f: E \to F$ et $g: F \to G$, montrer que $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$ pour tout $B \subset G$.